Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(2): e0132723, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38206003

RESUMO

Non-tuberculosis mycobacteria (NTM) can cause severe respiratory infection in patients with underlying pulmonary conditions, and these infections are extremely difficult to treat. In this report, we evaluate a nitric oxide (NO)-releasing prodrug [methyl tris diazeniumdiolate (MD3)] against a panel of NTM clinical isolates and as a treatment for acute and chronic NTM infections in vivo. Its efficacy in inhibiting growth or killing mycobacteria was explored in vitro alongside evaluation of the impact to primary human airway epithelial tissue. Airway epithelial tissues remained viable after exposure at concentrations of MD3 needed to kill mycobacteria, with no inherent toxic effect from drug scaffold after NO liberation. Resistance studies conducted via serial passage with representative Mycobacterium abscessus isolates demonstrated no resistance to MD3. When administered directly into the lung via intra-tracheal administration in mice, MD3 demonstrated significant reduction in M. abscessus bacterial load in both acute and chronic models of M. abscessus lung infection. In summary, MD3 is a promising treatment for complex NTM pulmonary infection, specifically those caused by M. abscessus, and warrants further exploration as a therapeutic.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium , Pró-Fármacos , Humanos , Animais , Camundongos , Óxido Nítrico , Antibacterianos/farmacologia , Pró-Fármacos/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Micobactérias não Tuberculosas , Testes de Sensibilidade Microbiana
2.
J Dent ; 123: 104203, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724941

RESUMO

OBJECTIVE: Using a battery of preclinical tests to support development of a light-based treatment for COVID-19, establish a range of 425 nm light doses that are non-hazardous to the tissues of the oral cavity and assess whether a 425 nm light dose in this non-hazardous range can inactivate SARS-CoV-2 in artificial saliva. METHODS: The potential hazards to oral tissues associated with a range of acute 425 nm light doses were assessed using a battery of four preclinical tests: (1) cytotoxicity, using well-differentiated human large airway and buccal epithelial models; (2) toxicity to commensal oral bacteria, using a panel of model organisms; (3) light-induced histopathological changes, using ex vivo porcine esophageal tissue, and (4) thermal damage, by dosing the oropharynx of intact porcine head specimens. Then, 425 nm light doses established as non-hazardous using these tests were evaluated for their potential to inactivate SARS-CoV-2 in artificial saliva. RESULTS: A dose range was established at which 425 nm light is not cytotoxic in well-differentiated human large airway or buccal epithelial models, is not cytotoxic to a panel of commensal oral bacteria, does not induce histopathological damage in ex vivo porcine esophageal tissue, and does not induce thermal damage to the oropharynx of intact porcine head specimens. Using these tests, no hazards were observed for 425 nm light doses less than 63 J/cm2 delivered at irradiance less than 200 mW/cm2. A non-hazardous 425 nm light dose in this range (30 J/cm2 at 50 mW/cm2) was shown to inactivate SARS-CoV-2 in vitro in artificial saliva. CONCLUSION: Preclinical hazard assessments and SARS-CoV-2 inactivation efficacy testing were combined to guide the development of a 425 nm light-based treatment for COVID-19. CLINICAL SIGNIFICANCE: The process used here to evaluate the potential hazards associated with 425 nm acute light dosing of the oral cavity to treat COVID-19 can be extended to other wavelengths, anatomical targets, and therapeutic applications to accelerate the development of novel photomedicine treatments.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Boca , Orofaringe , Saliva , Saliva Artificial , Suínos
3.
ACS Infect Dis ; 7(1): 23-33, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33291868

RESUMO

Antibiotic resistance in bacteria is a major global threat and a leading cause for healthcare-related morbidity and mortality. Resistant biofilm infections are particularly difficult to treat owing to the protective biofilm matrix, which decreases both antibiotic efficacy and clearance by the host. Novel antimicrobial agents that are capable of eradicating resistant infections are greatly needed to combat the rise of antibiotic-resistant bacteria, particularly in patients with cystic fibrosis who are frequently colonized by multidrug-resistant species. Our research group has developed nitric oxide-releasing biopolymers as alternatives to conventional antibiotics. Here, we show that nitric oxide acts as a broad-spectrum antibacterial agent while also improving the efficacy of conventional antibiotics when delivered sequentially. Alone, nitric oxide kills a broad range of bacteria in planktonic and biofilm form without engendering resistance. In combination with conventional antibiotics, nitric oxide increases bacterial susceptibility to multiple classes of antibiotics and slows the development of antibiotic resistance. We anticipate that the use of nitric oxide in combination with antibiotics may improve the outcome of patients with refractory infections, particularly those that are multidrug-resistant.


Assuntos
Óxido Nítrico , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...